Abstract

Cilia and flagella are dynamic organelles that are assembled and disassembled during cell differentiation, during stress, and during the cell cycle. Although intraflagellar transport (IFT) is well documented to be responsible for transport of ciliary/flagellar precursors from the cell body to the flagella, little is known about the molecular mechanisms for mobilizing the cell body-localized precursors to make them available for transport during organelle assembly or for disassembling the microtubule-based axoneme during shortening. Here, we show that Chlamydomonas kinesin-13 (CrKinesin-13), a member of the kinesin-13 family of microtubule depolymerizing kinesins best known for their roles in the cell cycle, functions in flagellar disassembly and flagellar assembly. Activation of a cell to generate new flagella induces rapid phosphorylation of CrKinesin-13, and activation of flagellar shortening induces the immediate transport of CrKinesin-13 via intraflagellar transport from the cell body into the flagella. Cells depleted of CrKinesin-13 by RNAi assemble flagella after cell division but are incapable of the rapid assembly of flagella that normally occurs after flagellar detachment. Furthermore, they are inhibited in flagellar shortening. Thus, CrKinesin-13 is dynamically regulated during flagellar assembly and disassembly in Chlamydomonas and functions in each.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.