Abstract

The mammalian kidney maintains fluid homeostasis through diverse epithelial cell types generated from nephron and ureteric progenitor cells. To extend a developmental understanding of the kidney's epithelial networks, we compared chromatin organization (single-nuclear assay for transposase-accessible chromatin sequencing [ATAC-seq]; 112,864 nuclei) and gene expression (single-cell/nuclear RNA sequencing [RNA-seq]; 109,477 cells/nuclei) in the developing human (10.6-17.6weeks; n= 10) and mouse (post-natal day [P]0; n= 10) kidney, supplementing analysis with published mouse datasets from earlier stages. Single-cell/nuclear datasets were analyzed at a species level, and then nephron and ureteric cellular lineages were extracted and integrated into a common, cross-species, multimodal dataset. Comparative computational analyses identified conserved and divergent features of chromatin organization and linked gene activity, identifying species-specific and cell-type-specific regulatory programs. In situ validation of human-enriched gene activity points to human-specific signaling interactions in kidney development. Further, human-specific enhancer regions were linked to kidney diseases through genome-wide association studies (GWASs), highlighting the potential for clinical insight from developmental modeling.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.