Abstract

A realizable, objective second-moment turbulence closure, allowing for an entropy characterisation, is analyzed with respect to its convective subset. The distinct characteristic wave system of these equations in non-conservation form is exposed. An approximate solution to Ihe associated one-dimensional Riemann problem is constructed making use of approximate jump conditions obtained by assuming a linear path across shock waves. A numerical integration method based on a new approximate Riemann solver (flux-difference-splitting) is proposed for use in conjunction with either unstructured or structured grids. Test calculations of quasi one-dimensional flow cases demonstrate the feasibility of the current technique even where Euler-based approaches fail.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.