Abstract

Lateral insulated gate bipolar transistors (LIGBTs) in silicon-on-insulator (SOI) show a unique turn off characteristic when compared to junction-isolated RESURF LIGBTs or vertical IGBTs. The turn off characteristic shows an extended ‘terrace’ where, after the initial fast transient characteristic of IGBTs due to the loss of the electron current, the current stays almost at the same value for an extended period of time, before suddenly dropping to zero. In this paper, we show that this terrace arises because there is a value of LIGBT current during switch off where the rate of expansion of the depletion region with respect to the anode current is infinite. Once this level of anode current is approached, the depletion region starts to expand very rapidly, and is only stopped when it reaches the n-type buffer layer surrounding the anode. Once this happens, the current rapidly drops to zero. A quasi-static analytic model is derived to explain this behaviour. The analytically modelled turn off characteristic agrees well with that found by numerical simulation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.