Abstract

This work presents a study on the influence of the design parameters on the ambipolar current (IAMB) of the Tunnel Field Effect Transistors (TFETs). Using numerical device simulations, IAMB is reduced progressively by underlapping the gate and the drain, by using low-k spacers and by placing the contacts in the top and bottom configuration. It is explained that a structure with top and bottom contacts leads to the field distribution inside the drain spacer, limiting the ambipolar current through the device. A TFET structure with ultra-low ambipolar current, totally independent of the gate voltage, is obtained by combining the layout of top and bottom contacts with low-k spacers. The scaling of the Silicon (Si) TFET is limited by the length of the drain spacer that cannot be scaled beyond a minimal limit without increasing IAMB to undesired high values.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.