Abstract
This paper analyzes the technical and economic performance of solar heating systems that use vapor-compression cycles, circulating a compressible fluid as the working fluid. With conventional solar heating systems that use water or as their working fluid, the collector inlet temperature is equal to that of the storage outlet temperature. Operating the system on a cold day can result in large thermal losses to the surroundings and, thus, low useful heat gains. A vapor-compression cycle may be attractive because it allows the collector inlet temperature to be lowered so that the heat gain of the collector can be increased. Such a system is simulated and a preliminary economic analysis performed. The results indicate that the vapor-compression system can collect almost 50% more solar energy than a conventional system if the collector area of the two systems are the same.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.