Abstract

We propose a new method, the continuous Galerkin method with globally and locally supported basis functions (CG-GL), to address the parametric robustness issues of reduced-order models (ROMs) by incorporating solution-based adaptivity with locally supported finite element basis functions. The CG-GL method combines the accuracy of locally supported basis functions with the efficiency of globally supported data-driven basis functions. Efficient output-based dual-weighted residual error estimates are derived and implemented for the CG-GL method and used to drive efficient online trial space adaptation. An empirical quadrature procedure is introduced for rapid evaluation of nonlinear terms that does not require retraining throughout the adaptation process. Two numerical experiments demonstrate the potential of the CG-GL method to produce accurate approximations with limited training and its tunable trade-off between accuracy and computational cost.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.