Abstract
Federated learning has been popular for its ability to train centralized models while protecting clients' data privacy. However, federated learning is highly susceptible to poisoning attacks, which can result in a decrease in model performance or even make it unusable. Most existing defense methods against poisoning attacks cannot achieve a good trade-off between robustness and training efficiency, especially on non-IID data. Therefore, this paper proposes an adaptive model filtering algorithm based on the Grubbs test in federated learning (FedGaf), which can achieve great trade-offs between robustness and efficiency against poisoning attacks. To achieve a trade-off between system robustness and efficiency, multiple child adaptive model filtering algorithms have been designed. Meanwhile, a dynamic decision mechanism based on global model accuracy is proposed to reduce additional computational costs. Finally, a global model weighted aggregation method is incorporated, which improves the convergence speed of the model. Experimental results on both IID and non-IID data show that FedGaf outperforms other Byzantine-robust aggregation rules in defending against various attack methods.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.