Abstract

In this paper, we report the amplification effect of surface-enhanced Raman scattering (SERS) in a solid-core photonic crystal fiber. Gold nanoparticles (AuNPs) are self-assembled on the inner walls of the cladding air holes through a multilayered deposition procedure. Offset launch method is for the first time employed to introduce extra enhancement in the intensity of SERS signals, as compared to the conventional core launch method. A theoretical analysis on modal field distribution for both launching conditions is carried out to account for such improvement. It shows that by adjusting the launching position of laser beam from the solid fiber core to an air hole in the cladding, overlap of the excited mode with AuNPs has been increased significantly. The SERS probe is demonstrated to achieve a detection limit as low as 10−7 M in concentration, which shows a competitive performance for molecule analysis.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.