Abstract
Amorphous indium-gallium-zinc-oxide (a-IGZO) is demonstrated as an electron transport layer (ETL) in a high-performance organic photodetector (OPD). Dark current in the range of 10 nA/cm2 at a bias voltage of −2 V and a high photoresponse in the visible spectrum were obtained in inverted OPDs with poly(3-hexylthiophene) and phenyl-C61-butyric acid methyl ester active layer. The best results were obtained for the optimum a-IGZO thickness of 7.5 nm with specific detectivity of 3 × 1012 Jones at the wavelength of 550 nm. The performance of the best OPD devices using a-IGZO was shown to be comparable to state-of-the-art devices based on TiOx as ETL, with higher rectification achieved in reverse bias. Yield and reproducibility were also enhanced with a-IGZO, facilitating fabrication of large area OPDs. Furthermore, easier integration with IGZO-based readout backplanes can be envisioned, where the channel material can be used as photodiode buffer layer after additional treatment.
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have