Abstract

Bipolar resistive switching in Al/fuel-assisted NiO(x) (40 nm)/ITO devices is demonstrated in this work. XPS analysis reveals the simultaneous presence of metallic Ni, Ni(2)O(3), and NiO components in the fuel-assisted NiO(x). The concentration, as well as spreading of the metallic Ni and accompanying oxygen vacancies, are related to the Al/NiO(x) interfacial reaction, which is enhanced by the increasing thickness of the Al top electrode. Correspondingly, the preswitching-on voltage decreases while the preswitching-off voltage increases with increasing thickness (from 15 to 60 nm) of Al. However, in regular switching operation, set and reset voltages are considerably lowered for devices with an increased thickness of the Al top electrode. The bipolar resistive switching behaviors of Al/fuel-assisted NiO(x)/ITO devices are therefore discussed based on the formation of conductive paths and their correlation with the Al-electrode modulated composition in the fuel-assisted NiO(x). The Al/NiO(x) interfacial reaction region pairs with ITO to form a dual-oxygen-reservoir structure. Mechanisms of construction/destruction of conducting paths originating from the electrochemical redox reactions at the interface between NiO(x), and the dual oxygen reservoirs will also be explicated.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.