Abstract

AbstractAn aluminum‐catalyzed intramolecular hydroalkoxylation of nonactivated alkenes is presented as a powerful synthetic tool for the preparation of oxygen heterocycles, which are of major interest for the preparation of biological and pharmaceutical active compounds. The aluminum isopropoxide catalyzed (5 mol %) cyclization of 2‐allylphenols at elevated temperatures (250 °C, 20 min) provides 2‐methylcoumarans (2‐methyl‐2,3‐dihydrobenzofuran) in an exceptionally fast, simple, and economic manner. Moreover, heating of allyl aryl ethers with aluminum isopropoxide (5 mol %) gives 2‐methylcoumarans by a tandem Claisen rearrangement–hydroalkoxylation reaction. For either reaction, the catalyst tolerates a broad scope of substrates with various functional groups. By using the weakly electrophilic aluminum alkoxide as the catalyst, occurrence of “hidden Brønsted acid” catalysis can be excluded under the present reaction conditions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.