Abstract

There are two approaches well known in the literature for reducing the complexity in averaged performance analyses of wireless communications systems (i.e., for alleviating the computational difficulty in averaged performance evaluations). The first method, known as the moment generating function MGF-based approach, aims to convert the instantaneous performance measure into an exponential integration or a certain sum of exponential functions of different scales. The second approach, which is the focus of this article, aims to convert the exact probability density function PDF and cumulative distribution function CDF of fading distributions into the sum of exponential functions of various scales. As such, we propose weighted sum of exponential functions as alternative closed-form approximations for the PDF and CDF of gamma distribution, η−μ distribution, and κ−μ shadowed distribution with integer fading parameters, and we present how these proposed expressions can be easily applied to the performance analysis of wireless communication systems operating over Nakagami-m fading channels, η−μ fading channels, and κ−μ shadowed fading channels.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.