Abstract

Rat hepatic mitochondrial function, including oxidative phosphorylation, fatty acid oxidative capacity, kinetic parameters of carnitine palmitoyltransferase I (CPT I), and sensitivity of CPT I to malonyl-CoA inhibition were studied in vitro in isolated mitochondria following Escherichia coli lipopolysaccharide (LPS). The hepatic mitochondrial CPT I in LPS-treated rats showed a lower apparent maximum velocity (Vmax) for palmitoyl-CoA and Ki for malonyl-CoA without changes in apparent Km for palmitoyl-CoA. The rate of oxygen consumption or end-product formation of palmitoyl-L-carnitine and octanoate was not altered, but the rate of CPT I-dependent palmitoyl-CoA (plus L-carnitine) oxidation was reduced by LPS, when acetyl-CoA produced via beta-oxidation was directed toward citrate. When acetyl-CoA was directed to acetoacetate, the oxygen consumption rates of palmitoyl-L-carnitine and palmitoyl-CoA (plus L-carnitine) were decreased by LPS, although mitochondrial 3-hydroxy-3-methylglutaryl-CoA synthase activity was not altered. These results indicate that hepatic mitochondria isolated from LPS-treated rats show lower ketogenic and long-chain acyl-CoA oxidative capacity than those of fasted controls, and inhibition of ketogenesis is elicited at a site distal to CPT I in addition to reduction in CPT I activity.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.