Abstract

We consider the problem of planning the location and size of sensors and actuators to achieve optimal dynamic performance. Using basic results from control and convex optimization, we formulate mixed-integer semidefinite programs for the actuator placement and sizing to obtain the linear quadratic regulator with the lowest cost, and the sensor placement to obtain the Kalman filter with the lowest error. The two formulations are nearly identical due to the duality of optimal linear control and estimation. We also pose similar problems in terms of observability and controllability, which result in smaller mixed-integer semidefinite programs. Since the mixed-integer semidefinite programing is not yet a mature technology, we also use greedy heuristics in conjunction with continuous semidefinite programming. The approach is demonstrated on two modern applications from power systems: the placement and sizing of energy storage for regulation and the placement of phasor measurement units for estimation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.