Abstract

This paper presents an information-theoretic approach to address the phasor measurement unit (PMU) placement problem in electric power systems. Different from the conventional 'topological observability' based approaches, this paper advocates a much more refined, information-theoretic criterion, namely the mutual information (MI) between the PMU measurements and the power system states. The proposed MI criterion can not only include the full system observability as a special case, but also can rigorously model the remaining uncertainties in the power system states with PMU measurements, so as to generate highly informative PMU configurations. Further, the MI criterion can facilitate robust PMU placement by explicitly modeling probabilistic PMU outages. We propose a greedy PMU placement algorithm, and show that it achieves an approximation ratio of (1-1/e) for any PMU placement budget. We further show that the performance is the best that one can achieve in practice, in the sense that it is NP-hard to achieve any approximation ratio beyond (1-1/e). Such performance guarantee makes the greedy algorithm very attractive in the practical scenario of multi-stage installations for utilities with limited budgets. Finally, simulation results demonstrate near-optimal performance of the proposed PMU placement algorithm.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.