Abstract

Widely-used C60 fullerene nanoparticles (C60) result in their release into the aquatic environment, which may affect the distribution and toxicity of pollutants such as arsenic (As), to aquatic organism. In this study, arsenate (As(V)) accumulation, speciation and subcellular distribution was determined in Danio rerio (zebrafish) intestine, head and muscle tissues in the presence of C60. Meanwhile we compared how single-walled carbon nanotubes (SWCNTs), multi-walled carbon nanotubes (MWCNTs), graphene oxide (GO) and graphene (GN) nanoparticles alter the behaviors of As(V). Results showed that C60 significantly inhibited As accumulation and toxicity in D. rerio, due to a decrease in total As and monomethylarsonic acid (MMA) and As(V) species concentrations, a lower relative distribution in the metal-sensitive fraction (MSF). It was attributed that C60 may coat As(V) ion channels and consequently, affect the secretion of digestive enzymes in the gut, favoring As excretion and inhibiting As methylation. Similarly, MWCNTs reduced the species concentration of MMA and As(V) in the intestines, low GSH (glutathione) contents in the intestine. Due to the disparity of other carbon-based nanomaterial morphologies, SWCNTs, GO and GN exhibited the various effects on the toxicity of As(V). In addition, the possible pathway of arsenobetaine (AsB) biosynthesis included migration from the intestine to muscle in D. rerio, with the precursor of AsB likely to be 2-dimethylarsinylacetic acid (DMAA). The results of this study suggest that C60 is beneficial for controlling As(V) pollution and reducing the impact of As(V) biogeochemical cycles throughout the ecosystem.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call