Abstract
Evidence for the presence of allatostatin (AST) A-like neuropeptides in the larval midge Chironomus riparius is reported. Immunohistochemical studies on the nervous system and gut revealed the presence of AST A-like immunoreactive (AST-IR) cells and processes. The nerve cord contained AST-IR processes that originated from cells in the brain and travelled the length of nerve cord to the terminal ganglion. Within each ganglion, these processes gave rise to varicosities, suggesting that they formed synapses with neurons in the ganglia. Endocrine cells containing AST-IR were present in three regions of the midgut: near the attachment of the Malpighian tubules, between the anterior and posterior midgut, and in the vicinity of the gastric caecae. The terminal ganglion also contained four AST-IR cells that gave rise to axons that projected onto the hindgut and posterior midgut. Application of a cockroach AST to the semi-isolated hindgut of larval C. riparius led to dose-dependent inhibition of muscle contractions with an EC50 of ~10 nmol l(-1) and a decrease in rectal K(+) reabsorption resulting from reduced rectal Na(+)/K(+)-ATPase and vacuolar type H(+)-ATPase activities. The results suggest the presence of endogenous AST-like neuropeptides in larval C. riparius, where these factors play a role in the function of the gut. Furthermore, regulation of ion reabsorption by ASTs at the rectum could serve as an ideal mechanism of ion regulation in the face of abrupt and acute elevated salt levels.
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have