Abstract

The radiation pressure of a chopped, 3 mW optical beam is used to excite angular motion of a Microelectrical-mechanical-systems’ (MEMS) mirror at its resonant frequencies. The modes are identified with a scanning interferometer, providing an all-optical excitation/detection scheme. The resonant frequencies, mode distributions, spring constants, and coupling between adjacent MEMS devices can, therefore, be studied without the use of electrostatic or other types of actuation. Within the experimental error of ∼30%, the amplitude of angular oscillation is equal to the theoretical value expected for radiation pressure.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.