Abstract

ALK rearrangements are present in 5% of nonsmall cell lung cancer (NSCLC) tumors and identify patients who can benefit from ALK inhibitors. ALK fusions testing using liquid biopsies, although challenging, can expand the therapeutic options for ALK-positive NSCLC patients considerably. RNA inside extracellular vesicles (EVs) is protected from RNases and other environmental factors, constituting a promising source for noninvasive fusion transcript detection. EVs from H3122 and H2228 cell lines, harboring EML4-ALK variant 1 (E13; A20) and variant 3 (E6a/b; A20), respectively, were successfully isolated by sequential centrifugation of cell culture supernatants. EVs were also isolated from plasma samples of 16 ALK-positive NSCLC patients collected before treatment initiation. Purified EVs from cell cultures were characterized by transmission electron microscopy (TEM), nanoparticle tracking analysis (NTA), and flow cytometry. Western blot and confocal microscopy confirmed the expression of EV-specific markers as well as the expression of EML4-ALK-fusion proteins in EV fractions from H3122 and H2228 cell lines. In addition, RNA from EV fractions derived from cell culture was analyzed by digital PCR (dPCR) and ALK-fusion transcripts were clearly detected. Similarly, plasma-derived EVs were characterized by NTA, flow cytometry, and the ExoView platform, the last showing that EV-specific markers captured EV populations containing ALK-fusion protein. Finally, ALK fusions were identified in 50% (8/16) of plasma EV-enriched fractions by dPCR, confirming the presence of fusion transcripts in EV fractions. ALK-fusion transcripts can be detected in EV-enriched fractions. These results set the stage for the development of EV-based noninvasive ALK testing.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.