Abstract
Early detection of the cell type changes underlying several genitourinary tract diseases largely remains an unmet clinical need, where existing assays, if available, lack the cellular resolution afforded by an invasive biopsy. While messenger RNA in urine could reflect the dynamic signal that facilitates early detection, current measurements primarily detect single genes and thus do not reflect the entire transcriptome and the underlying contributions of cell type-specific RNA. We isolated and sequenced the cell-free RNA (cfRNA) and sediment RNA from human urine samples (n = 6 healthy controls and n = 12 kidney stone patients) and measured the urine metabolome. We analyzed the resulting urine transcriptomes by deconvolving the noninvasively measurable cell type contributions and comparing to plasma cfRNA and the measured urine metabolome. Urine transcriptome cell type deconvolution primarily yielded relative fractional contributions from genitourinary tract cell types in addition to cell types from high-turnover solid tissues beyond the genitourinary tract. Comparison to plasma cfRNA yielded enrichment of metabolic pathways and a distinct cell type spectrum. Integration of urine transcriptomic and metabolomic measurements yielded enrichment for metabolic pathways involved in amino acid metabolism and overlapped with metabolic subsystems associated with proximal tubule function. Noninvasive whole transcriptome measurements of human urine cfRNA and sediment RNA reflects signal from hard-to-biopsy tissues exhibiting low representation in blood plasma cfRNA liquid biopsy at cell type resolution and are enriched in signal from metabolic pathways measurable in the urine metabolome.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.