Abstract

Abstract A novel approach is proposed to fabricate sulfonated poly (phthalazinone ether sulfone ketone) (SPPESK) proton exchange membranes with ordered through-plane electrospinning nanofibers, which provide nano-scale through-plane proton conductive channels along the thickness direction of the membranes, aiming to satisfy the challenging requirement of high through-plane proton conductivity in fuel cell operations. Induced by electrostatic attraction of strong electric field, the negatively charged sulfonic acid groups tend to aggregate towards surface of the electrospun fibers, which is evidenced by TEM and SAXS and further induces aggregation of the sulfonic acid groups in the SPPESK inferfiber voids filler along the surface of the nanofibers. The aligned electrospun nanofibers carries long-range ionic clusters along the thickness direction of the membrane and results in much higher total through-plane conductivity in the thickness aligned electrospun membranes, nearly twice as much as that of the cast SPPESK membrane. With smooth treatment, the thickness aligned electrospun SPPESK membranes exhibit higher single cell power density and tensile strength as compared with Nafion 115 (around 1.2 and 1.5 folds, respectively). Such a design of thickness aligned nano-size proton conductive channels provide feasibility for high performance non-fluorinated PEMs in fuel cell applications.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.