Abstract
A straightforward algorithm for the symbolic computation of generalized (higher‐order) symmetries of nonlinear evolution equations and lattice equations is presented. The scaling properties of the evolution or lattice equations are used to determine the polynomial form of the generalized symmetries. The coefficients of the symmetry can be found by solving a linear system. The method applies to polynomial systems of PDEs of first order in time and arbitrary order in one space variable. Likewise, lattices must be of first order in time but may involve arbitrary shifts in the discretized space variable. The algorithm is implemented in Mathematica and can be used to test the integrability of both nonlinear evolution equations and semi‐discrete lattice equations. With our Integrability Package, generalized symmetries are obtained for several well‐known systems of evolution and lattice equations. For PDEs and lattices with parameters, the code allows one to determine the conditions on these parameters so that a sequence of generalized symmetries exists. The existence of a sequence of such symmetries is a predictor for integrability.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.