Abstract

Let G be a simple graph of order n and λ∈ℕ. A mapping f:V(G)→{1,2,…,λ} is called a λ-colouring of G if f(u)≠f(v) whenever the vertices u and v are adjacent in G. The number of distinct λ-colourings of G, denoted by P(G,λ), is called the chromatic polynomial of G. The domination polynomial of G is the polynomial D(G,λ)=∑i=1nd(G,i)λi, where d(G,i) is the number of dominating sets of G of size i. Every root of P(G,λ) and D(G,λ) is called the chromatic root and the domination root of G, respectively. Since chromatic polynomial and domination polynomial are monic polynomial with integer coefficients, its zeros are algebraic integers. This naturally raises the question: which algebraic integers can occur as zeros of chromatic and domination polynomials? In this paper, we state some properties of this kind of algebraic integers.

Highlights

  • Let G be a simple graph and λ ∈ N

  • Since chromatic polynomial and domination polynomial are monic polynomial with integer coefficients, its zeros are algebraic integers. This naturally raises the question: which algebraic integers can occur as zeros of chromatic and domination polynomials? In this paper, we state some properties of this kind of algebraic integers

  • Since the chromatic polynomial and domination polynomial are monic polynomial with integer coefficients, its zeros are algebraic integers

Read more

Summary

Introduction

Let G be a simple graph and λ ∈ N. The number of distinct λ-colourings of G, denoted by P G, λ , is called the chromatic polynomial of G. Since the chromatic polynomial and domination polynomial are monic polynomial with integer coefficients, its zeros are algebraic integers. This naturally raises the question: which algebraic integers can occur as zeros of chromatic and domination polynomials?

Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call