Abstract
We revisit the topic of common lines between projection images in single-particle cryo-electron microscopy (cryo-EM). We derive a novel low-rank constraint on a certain 2n×n matrix storing properly scaled basis vectors for the common lines between n projection images of one molecular conformation. Using this algebraic constraint and others, we give optimization algorithms to denoise common lines and recover the unknown 3D rotations associated with the images. As an application, we develop a clustering algorithm to partition a set of noisy images into homogeneous communities using common lines, in the case of discrete heterogeneity in cryo-EM. We demonstrate the methods on synthetic and experimental datasets.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Similar Papers
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.