Abstract
TiO2 films deposited on GaN layers at room temperature through a simple and low-cost liquid-phase deposition (LPD) method are investigated and served as gate dielectrics in AlGaN/GaN MOSHEMTs. The electrical characteristics of the MOS structure on n-doped GaN show that the leakage current is about 1.01times10-7 A/cm2 at 1 MV/cm and that the breakdown field is more than 6.5 MV/cm. The maximum drain current density of MOSHEMTs is higher than that of conventional HEMTs, and a wider gate voltage swing can also be observed. The maximum transconductance and threshold voltage almost maintain the same characteristics, even after inserting a dielectric layer between the gate metal and the 2DEG channel by using TiO2 as a gate dielectric. The gate leakage current density is significantly improved, and the bias stress measurement shows that current collapse is much suppressed for MOSHEMTs.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.