Abstract
Two key parameters for silicon MOSFET scaling, equivalent oxide thickness (EOT) and gate leakage current density (J/sub g/) are measured and modeled for silicon oxynitride (Si-O-N) gate dielectrics formed by plasma nitridation of SiO/sub 2/. It is found that n-MOSFET inversion J/sub g/ is larger than p-MOSFET inversion J/sub g/ when the gate dielectric consists of less than 27% nitrogen atoms, indicating substrate injection of electrons is dominant for this range of plasma nitrided Si-O-N. To examine the intrinsic scaling of Si-O-N, we model EOT and n-MOSFET J/sub g/ for sub-2-nm physically thick gate dielectrics as a function of film physical thickness and nitrogen content. The model has four free fitting parameters and unlike existing models does not assume a priori the values of the oxide and nitride dielectric constant, barrier height, or effective mass. It indicates that at a given EOT, leakage current of n-MOSFETs with Si-O-N gate dielectrics reaches a minimum at a specific nitrogen content. Through the use of this model, we find that plasma nitrided Si-O-N can meet the 65-nm International Technology Roadmap for Semiconductors specifications for J/sub g/, and we estimate the nitrogen concentration required for each node and application.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.