Abstract
The performance characteristics of AlGaN-based deep ultraviolet light emitting diodes (UV-LEDs) grown by metalorganic vapor phase epitaxy on sputtered and high temperature annealed AlN/sapphire templates are investigated and compared with LEDs grown on epitaxially laterally overgrown (ELO) AlN/sapphire. The structural and electro-optical properties of the devices on 350 nm sputtered and high temperature annealed AlN/sapphire show similar defect densities and output power levels as LEDs grown on low defect density ELO AlN/sapphire templates. After high temperature annealing of the 350 nm sputtered AlN, the full widths at half maximum of the (0002) and (101¯2) reflections of the high resolution x-ray diffraction rocking curves decrease by one order of magnitude to 65 arc sec and 240 arc sec, respectively. The curvature of the sputtered and HTA AlN/sapphire templates after regrowth with 400 nm MOVPE AlN is with −80 km−1 much lower than the curvature of the ELO AlN/sapphire template of −160 km−1. The on-wafer measured output powers of 268 nm LEDs grown on 350 nm sputtered and high temperature annealed AlN/sapphire templates and ELO AlN/sapphire templates were 0.70 mW and 0.72 mW at 20 mA, respectively (corresponding to an external quantum efficiency of 0.75% and 0.78%). These results show that sputtered and high temperature annealed AlN/sapphire provide a viable approach for the fabrication of efficient UVC-LEDs with reduced complexity and thus reduced costs.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.