Abstract
ABSTRACTUsing micro-Raman scattering and finite element (FE) analysis, stress fields in epitaxial lateral overgrown (ELO) GaN fabricated by metalorganic vapor phase epitaxy (MOVPE) on sapphire substrates using a two-step growth method were investigated. Nearly full stress relaxation at the top ELO GaN surface can be achieved by increasing the thickness of ELO GaN to about 50 μm. Reductions in stress variation between window and overgrown regions can be achieved by using a double ELO GaN growth at a much smaller ELO thickness. Increased compressive stress at the coalescence boundary of two adjacent wings of ELO GaN was related to the presence of voids in this area. In the double ELO growth, stress near the top surface was mainly attributed to the presence of voids on top of the upper dielectric mask.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.