Abstract

High-intensity light induces anthocyanin production in wild-type Arabidopsis leaves, but this induction is largely abolished in the chlorotic leaf tissues of AKR (ankyrin repeat-containing protein)-deficient plants. The steady-state mRNA levels of three anthocyanin biosynthetic genes, CHI, CHS and DFR, did not increase in response to high-intensity light treatment in chlorotic leaf tissues, whereas they increased several fold in green leaf tissues. There is a good correlation between anthocyanin production and transcript levels of anthocyanin biosynthetic genes, especially DFR, in green leaf tissues. In contrast, the transcripts of TCH2 and TCH3 that encode for calmodulin-related proteins and GPA that encodes for the α subunit of the trimeric G protein were much higher in chlorotic leaf tissues than those in green leaf tissues. These data suggest that the AKR-deficiency could increase gene expression in one signal transduction pathway and at the same time repress gene expression in another signal transduction pathway, which alludes to a possible mechanism for AKR involvement in chloroplast development.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.