Abstract
An optimization method based on the sensitivity of global and local geometric parameters is proposed to improve the cooling efficiency of E3 engine nozzle guide vane. For 29 geometric parameters that affect the vane maximum temperature in the cooling design, the sensitivity ranking of them is firstly obtained by the DOE method. Then the most influential parameters including the diameter or location of the film cooling hole are selected as the optimization variables to decrease the maximum surface temperature of the nozzle guide vane. On this basis, to further reduce the local temperature downstream the pressure side, a new duck-paw type film cooling hole is applied. The duck-paw type film cooling hole was produced with the adjoint method through identifying the sensitivity of the geometric boundary parameters of the film cooling holes. Compared to the cylindrical holes, the duck-paw shaped film cooling hole can greatly improve the cooling efficiency under the same conditions. The duck-paw type film cooling holes are applied to the last two rows of film cooling holes located on the pressure side of nozzle guide vane. Three-dimensional conjugate flow and heat transfer analysis results show that the maximum temperature of the optimized cooling structure vane is reduced by 39K, and the average temperature decreases by nearly 20K.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.