Abstract

A three-dimensional numerical analysis of laminar fluid flow and conjugate heat transfer has been conducted for single- and two-layered micro-channel heat sinks. The validity of the numerical model has been confirmed by comparison with available experimental data. Results for the overall thermal resistance, pumping power, the maximum temperature difference on the heat-sink surface where the heat flux is applied, and an overall performance parameter were obtained for single- and two-layered sinks. The effects of Reynolds number, inlet velocity profile, and flow arrangement in the channels (parallel and counter) on these results are presented and discussed. A special emphasis was placed on the comparison between the thermal performances of the parallel and counter flow arrangements and further results were obtained in order to quantify and explain the relative performance under these flow arrangements.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.