Abstract

The ability of various arrays of micro pin-fins to reduce maximum temperature of an integrated circuit with a 4 × 3 mm footprint and a 0.5 × 0.5 mm hot spot was investigated numerically. Micro pin-fins having circular, symmetric airfoil and symmetric convex lens cross sections were optimized to handle a background uniform heat flux of 500 W cm−2 and a hot spot uniform heat flux of 2000 W cm−2. A fully three-dimensional conjugate heat transfer analysis was performed and a multi-objective, constrained optimization was carried out to find a design for each pin-fin shape capable of cooling such high heat fluxes. The two simultaneous objectives were to minimize maximum temperature and minimize pumping power, while keeping the maximum temperature below 85 °C. The design variables were the inlet average velocity and shape, size and height of the pin-fins. A response surface was generated for each of the objectives and coupled with a genetic algorithm to arrive at a Pareto frontier of the best trade-off solutions. Stress–deformation analysis incorporating hydrodynamic and thermal loads was performed on the three Pareto optimized configurations. Von-Mises stress for each configuration was found to be significantly below the yield strength of silicon.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.