Abstract
The aim of this paper was to analyze the ground and low vegetation points of a Light Detection and Ranging (LiDAR) point cloud from the aspect of the generated digital terrain model (DTM). We determined the height difference between the surveyed surface and the DTM and the level of interspersion of ground and low vegetation points in a floodplain. Finally, we performed a supervised classification with topographic (elevation, slope and aspect) variables and an Normalized Difference Vegetation Index (NDVI) layer to identify swales and point bars as floodplain forms. Cross sections of field surveys provided reference data to express the magnitude of the bias on the DTM caused by the vegetation, and we proved that the bias can reach the 60% of the relative height and depth of the floodplain forms (mean error was 0.15 ± 0.12 m). A landscape metric, the Aggregation Index, provided an appropriate tool to analyze and quantify the interspersion of the ground and vegetation points: indicating a high level of interspersion of the classified points, i.e. proved that vegetation points where the last echoes reflected from the vegetation became ground points. Floodplain classification performed best with the common use of DTM, slope, aspect and NDVI coverages, with 71% overall accuracy.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have