Abstract
Chest X-ray images are widely used to detect many different lung diseases. However, reading chest X-ray images to accurately detect and classify different lung diseases by doctors is often difficult with large inter-reader variability. Thus, there is a huge demand for developing computer-aided automated schemes of chest X-ray images to help doctors more accurately and efficiently detect lung diseases depicting on chest X-ray images. To develop convolution neural network (CNN) based deep learning models and compare their feasibility and performance to classify 14 chest diseases or pathology patterns based on chest X-rays. Several CNN models pre-trained using ImageNet dataset are modified as transfer learning models and applied to classify between 14 different chest pathology and normal chest patterns depicting on chest X-ray images. In this process, a deep convolution generative adversarial network (DC-GAN) is also trained to mitigate the effects of small or imbalanced dataset and generate synthetic images to balance the dataset of different diseases. The classification models are trained and tested using a large dataset involving 91,324 frontal-view chest X-ray images. In this study, eight models are trained and compared. Among them, ResNet-152 model achieves an accuracy of 67% and 62% with and without data augmentation, respectively. Inception-V3, NasNetLarge, Xcaption, ResNet-50 and InceptionResNetV2 achieve accuracy of 68%, 62%, 66%, 66% and 54% respectively. Additionally, Resnet-152 with data augmentation achieves an accuracy of 83% but only for six classes. This study solves the problem of having fewer data by using GAN-based techniques to add synthetic images and demonstrates the feasibility of applying transfer learning CNN method to help classify 14 types of chest diseases depicting on chest X-ray images.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.