Abstract
In this research, A Deep Convolutional Neural Network was proposed to detect Pneumonia infection in the lung using Chest X-ray images. The proposed Deep CNN models were trained with a Pneumonia Chest X-ray Dataset containing 12,000 images of infected and not infected chest X-ray images. The dataset was preprocessed and developed from the Chest X-ray8 dataset. The Content-based image retrieval technique was used to annotate the images in the dataset using Metadata and further contents. The data augmentation techniques were used to increase the number of images in each of class. The basic manipulation techniques and Deep Convolutional Generative Adversarial Network (DCGAN) were used to create the augmented images. The VGG19 network was used to develop the proposed Deep CNN model. The classification accuracy of the proposed Deep CNN model was 99.34 percent in the unseen chest X-ray images. The performance of the proposed deep CNN was compared with state-of-the-art transfer learning techniques such as AlexNet, VGG16Net and InceptionNet. The comparison results show that the classification performance of the proposed Deep CNN model was greater than the other techniques.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Journal of ambient intelligence and humanized computing
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.