Abstract

Background and objectivesThe traditional method of detecting COVID-19 disease mainly rely on the interpretation of computer tomography (CT) or X-ray images (X-ray) by doctors or professional researchers to identify whether it is COVID-19 disease, which is easy to cause identification mistakes. In this study, the technology of convolutional neural network is expected to be able to efficiently and accurately identify the COVID-19 disease. MethodsThis study uses and fine-tunes seven convolutional neural networks including InceptionV3, ResNet50V2, Xception, DenseNet121, MobileNetV2, EfficientNet-B0, and EfficientNetV2 on COVID-19 detection. In addition, we proposes a lightweight convolutional neural network, LightEfficientNetV2, on small number of chest X-ray and CT images. Five-fold cross-validation was used to evaluate the performance of each model. To confirm the performance of the proposed model, LightEfficientNetV2 was carried out on three different datasets (NIH Chest X-rays, SARS-CoV-2 and COVID-CT). ResultsOn chest X-ray image dataset, the highest accuracy 96.50% was from InceptionV3 before fine-tuning; and the highest accuracy 97.73% was from EfficientNetV2 after fine-tuning. The accuracy of the LightEfficientNetV2 model proposed in this study is 98.33% on chest X-ray image. On CT images, the best transfer learning model before fine-tuning is MobileNetV2, with an accuracy of 94.46%; the best transfer learning model after fine-tuning is Xception, with an accuracy of 96.78%. The accuracy of the LightEfficientNetV2 model proposed in this study is 97.48% on CT image. ConclusionsCompared with the SOTA, LightEfficientNetV2 proposed in this study demonstrates promising performance on chest X-ray images, CT images and three different datasets.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call