Abstract

This paper presents an Internet of Things (IoT) architecture for a power aggregator of energy resources in active distribution networks. Two types of algorithms are evaluated and compared: centralized and decentralized control. The former is based on real-time estimation of the demand and subsequent optimization. The latter is based on the Alternating Direction Method of Multipliers (ADMM). Both algorithms were evaluated on an IoT platform consisting of agents implemented on a series of small single-board computers based on Raspberry Pi technology, connected to a centralized computer that emulates the grid. This platform allows realistic evaluation of the algorithms, considering the effects of communication. The main grid considers power losses and the dynamics of inverter-based renewable resources using quasi-dynamic simulation. This type of simulation can be considered real-time for this application. The platform is demonstrated to be flexible and provides a real view of the practical problems that aggregators may face when implementing them in a power distribution network.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call