Abstract

Modern Field Programmable Gate Arrays (FPGAs) are built using the most advanced technology nodes to meet performance and power demands. This makes them susceptible to various reliability challenges at nano-scale, and in particular to transistor aging. In this paper, an experimental analysis is made to identify the main parameters and phenomena influencing the performance degradation of FPGAs. For that purpose, a set of controlled ring-oscillator-based sensors with different frequencies and tunable activity control are implemented on a Spartan-6 FPGA. Thus, the internal switching activities (SAs) and signal probabilities (SPs) of the sensors can be varied. We performed accelerated-lifetime conditions using elevated temperatures and voltages in a controlled setting to stress the FPGA. A novel monitoring method based on measuring the electromagnetic emissions of the FPGA is used to accurately monitor the performance of the sensors before and after the stress. The experiments reveal the extent of performance degradations, the impact of SPs and SAs, and the relative impacts of BTI and HCI aging factors.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.