Abstract
once the requirement is gathered in agile, it is broken down into smaller pre-defined format called user stories. These user stories are then scoped in various sprint releases and delivered accordingly. Release planning in Agile becomes challenging when the number of user stories goes up in hundreds. In such scenarios it is very difficult to manually identify similar user stories and package them together into a release. Hence, this paper suggests application of natural language processing algorithms for identifying similar user stories and then scoping them into a release This paper takes the approach to build a word corpus for every project release identified in the project and then to convert the provided user stories into a vector of string using Java utility for calculating top 3 most occurring words from the given project corpus in a user story. Once all the user stories are represented as vector array then by using RV coefficient NLP algorithm the user stories are clustered into various releases of the software project. Using the proposed approach, the release planning for large and complex software engineering projects can be simplified resulting into efficient planning in less time. The automated commercial tools like JIRA and Rally can be enhanced to include suggested algorithms for managing release planning in Agile.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have