Abstract
Many sensory systems are endowed with mechanisms of neural plasticity that are restricted to a sensitive period in the young developing animal. In this study, we performed experiments in slices of the main olfactory bulb (OB) from rats to examine possible age-dependent cellular mechanisms of plasticity in the olfactory system. We focused on the neurotransmitter norepinephrine (NE), shown to be important in different forms of olfactory learning, examining whether two specific cellular effects of NE previously observed in rats less than P14 extended to older animals. These included an acute reduction in GABAergic synaptic transmission from granule cells (GCs) onto output mitral cells (MCs) and an enhancement in gamma frequency (30-70 Hz) oscillations that persists long after removal of NE. We found that NE failed to reduce GC-to-MC transmission or enhance gamma oscillations in older rats at P18-23. The loss of NE actions on both phenomena appeared to reflect an age-dependent loss of function of α(2)-adrenergic receptors. In addition, we found that NE induced an age-dependent enhancement of transient excitation in MCs, providing a mechanism to link the acute decrease in GC-to-MC inhibition to the long-term increase in gamma oscillations through increases in intracellular calcium. The age-dependent cellular mechanisms that we describe could underlie an olfactory-sensitive period in newborn rodents.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have