Abstract

New multifunctional materials based on well-established materials to which functional properties are added, such as antibacterial performance, have become a relevant research topic, in order to meet the requirements of today's technological advances. This paper reports the results of a detailed structural and chemical characterization study of ZrCN–Ag coatings produced by reactive magnetron sputtering, as well as the release of silver after immersion in a simulated body fluid (Hank's balanced salt solution), which mimic the material behaviour within the human body. The chemical composition was evaluated by electron probe microanalysis, x-ray photoelectron spectroscopy and Rutherford backscattering spectroscopy, whereas the structure was assessed by Raman spectroscopy and x-ray diffraction. The material exhibits a homogeneous distribution of the elements throughout the films, with a (C + N)/Zr ratio of around 1.3 and 15 at% of silver. A mixture of amorphous (a-C and CNx) and crystalline phases (ZrCN) was identified. In addition, the silver was detected to be released in less than 0.7% of the total silver in the films, occurring during the first two hours of immersion; no further release was evidenced after this period of time.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.