Abstract

Memristors are considered promising energy-efficient artificial intelligence hardware, which can eliminate the von Neumann bottleneck by parallel in-memory computing. The common imperfection-enabled memristors are plagued with critical variability issues impeding their commercialization. Reported approaches to reduce the variability usually sacrifice other performances, e.g., small on/off ratios and high operation currents. Here, we demonstrate an unconventional Ag-doped nonimperfection diffusion channel-enabled memristor in van der Waals indium phosphorus sulfide, which can combine ultralow variabilities with desirable metrics. We achieve operation voltage, resistance, and on/off ratio variations down to 3.8, 2.3, and 6.9% at their extreme values of 0.2 V, 1011 ohms, and 108, respectively. Meanwhile, the operation current can be pushed from 1 nA to 1 pA at the scalability limit of 6 nm after Ag doping. Fourteen Boolean logic functions and convolutional image processing are successfully implemented by the memristors, manifesting the potential for logic-in-memory devices and efficient non-von Neumann accelerators.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.