Abstract
The extraction of biomarkers from functional connectivity (FC) in the brain is of great significance for the diagnosis of mental disorders. In recent years, with the development of deep learning, several methods have been proposed to assist in the diagnosis of depression and promote its automatic identification. However, these methods still have some limitations. The current approaches overlook the importance of subgraphs in brain graphs, resulting in low accuracy. Using these methods with low accuracy for FC analysis may lead to unreliable results. To address these issues, we have designed a graph neural network-based model called AFMDD, specifically for analyzing FC features of depression and depression identification. Through experimental validation, our model has demonstrated excellent performance in depression diagnosis, achieving an accuracy of 73.15%, surpassing many state-of-the-art methods. In our study, we conducted visual analysis of nodes and edges in the FC networks of depression and identified several novel FC features. Those findings may provide valuable clues for the development of biomarkers for the clinical diagnosis of depression.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have