Abstract

Aflatoxin pollution poses great harm to human and animal health and causes huge economic losses. The biological detoxification method that utilizes microorganisms and their secreted enzymes to degrade aflatoxin has the advantages of strong specificity, high efficiency, and no pollution inflicted onto the environment. In this study, Bacillus subtilis WJ6 with a high efficiency in aflatoxin B1 degradation was screened and identified through molecular identification, physiological, and biochemical methods. The fermentation broth, cell-free supernatant, and cell suspension degraded 81.57%, 73.27%, and 8.39% of AFB1, respectively. The comparative transcriptomics analysis indicated that AFB1 led to 60 up-regulated genes and 31 down-regulated genes in B. subtilis WJ6. A gene ontology (GO) analysis showed that the function classifications of cell aggregation, the organizational aspect, and the structural molecule activity were all of large proportions among the up-regulated genes. The down-regulated gene expression was mainly related to the multi-organism process function under the fermentation condition. Therefore, B. subtilis WJ6 degraded AFB1 through secreted extracellular enzymes with the up-regulated genes of structural molecule activity and down-regulated genes of multi-organism process function.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.