Abstract
SummaryAlthough the deep-sea bathymodiolin mussels have been intensively studied as a model of animal-bacteria symbiosis, it remains challenging to assess the host-symbiont interactions due to the complexity of the symbiotic tissue—the gill. Using cold-seep mussel Gigantidas platifrons as a model, we isolated the symbiont harboring bacteriocytes and profiled the transcriptomes of the three major parts of the symbiosis—the gill, the bacteriocyte, and the symbiont. This breakdown of the complex symbiotic tissue allowed us to characterize the host-symbiont interactions further. Our data showed that the gill's non-symbiotic parts play crucial roles in maintaining and protecting the symbiosis; the bacteriocytes supply the symbiont with metabolites, control symbiont population, and shelter the symbiont from phage infection; the symbiont dedicates to the methane oxidation and energy production. This study demonstrates that the bathymodiolin symbiosis interacts at the tissue, cellular, and molecular level, maintaining high efficiency and harmonic chemosynthetic micro niche.
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.