Abstract

We constructed a novel thermophilic microbial consortium, TADC7, with stable and efficient aflatoxin B1 (AFB1) degradation activity. The microbial consortium degraded more than 95% of the toxin within 72h when cultured with AFB1, and the optimum temperature was 55–60°C. TADC7 tolerated high doses of AFB1, with no inhibitory effects up to 5000μgL−1 AFB1; moreover, the degradation kinetics fit well with the Monod model. The proteins or enzymes in the TADC7 cell-free supernatant played a major role in AFB1 degradation. AFB1 degradation by the cell-free supernatant was stable up to 90°C, with an optimal pH of 8–10. We performed 16S rRNA sequencing to determine TADC7 community structure dynamics; the results indicated that Geobacillus and Tepidimicrobium played major roles in AFB1 degradation.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call