Abstract

This article describes an experimental investigation of the aerodynamic interaction that occurs between distributed propellers in forward flight. To this end, three propellers were installed in close proximity in a wind tunnel, and the changes in their performance, flow-field characteristics, and noise production were quantified using internal force sensors, total-pressure probes, particle-image velocimetry (PIV), and microphones recessed in the wind-tunnel wall. At the thrust setting corresponding to maximum efficiency, the efficiency of the middle propeller is found to drop by 1.5% due to the interaction with the adjacent propellers, for a tip clearance equal to 4% of the propeller radius. For a given blade-pitch angle, this performance penalty increases with angle of attack, decreasing thrust setting, or a more upstream propeller position, while being insensitive to the rotation direction and relative blade phase angle. Furthermore, the velocities induced by the adjacent propeller slipstreams lead to local loading variations on the propeller disk of 5% – 10% of the average disk loading. Exploratory noise measurements show that the interaction leads to different tonal noise waveforms of the system when compared to the superposition of isolated propellers. Moreover, the results confirm that an active control of the relative blade phase angles between propellers can effectively modify the directivity pattern of the system.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.