Abstract
Excessive (carbon dioxide) CO2 emissions are a primary factor contributing to climate change. As one of the crucial technologies for alleviating CO2 emissions, carbon capture and utilization (CCU) technology has attracted considerable global attention. Technologies for capturing CO2 in extreme circumstances are indispensable for regulating CO2 levels in industrial processes. The unique separation characteristics of the ceramic–carbonate dual-phase (CCDP) membranes are increasingly employed for CO2 separation at high temperatures due to their outstanding chemical, thermal durability, and mechanical strength. This paper presents an overview of CO2 capture approaches and materials. It also elaborates on the research progress of three types of CCDP membranes with distinct permeation mechanisms, concentrating on their principles, materials, and structures. Additionally, several typical membrane reactors, such as the dry reforming of methane (DRM) and reverse water–gas shift (RWGS), are discussed to demonstrate how captured CO2 can function as a soft oxidant, converting feedstocks into valuable products through oxidation pathways designed within a single reactor. Finally, the future challenges and prospects of high-temperature CCDP membrane technologies and their related reactors are proposed.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have