Abstract

Since it is an urgent issue to reduce the global Carbon-dioxide in the world, renewable energy should be supplied as a large amount of the electric power. However, if a large amount of fluctuating renewable energy becomes more than adjustable amount of a utility grid capacity, instabilities such as frequency deviation might occur. We propose a system that is composed of SMES and FC-H2-Electrolyzer and also installed adjacent to Liquid Hydrogen station to cool down the SMES. Since the SMES has potentials of quick response and large I/O power, and Fuel Cell has potentials of slow response and steady power supplied from a large amount of hydrogen, we combine both storage devices and apply them to suppress the fluctuating power. We convert the fluctuating power to the constant power by using a developed prediction technology of Kalman filter to predict a trend of the fluctuating power. While the trend power should be supplied by FC or absorbed by the electrolyzer to produce hydrogen, the power difference between the renewable power and the trend power should be stored by the SMES. We simulate the power balance and analyze the required SMES capacity, design the concept of the SMES, and propose an operation algorithm for the SMES to estimate the electric efficiency of the system. It is found that the electric efficiency of the ASPCS can become greater than that of a pumped hydro-machine.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.